
Abstract Cross validation (CV) and validation with an
independent sample (IV) are new biometric approaches
in QTL analysis to obtain unbiased estimates of QTL ef-
fects and the proportion of the genetic variance ex-
plained by the detected marker-QTL association (p). Our
objective with these methods was to obtain a realistic
picture on the prospects of marker-assisted selection
(MAS) for improving the resistance of maize against the
tropical stem borer species Diatraea grandiosella
(SWCB) and Diatraea saccharalis (SCB). Published
QTL mapping studies on leaf-damage ratings (LDR)
with populations of F2:3 lines and recombinant inbred
lines (RIL) from crosses CML131×CML67 and Ki3×
CML139 of tropical maize inbreds were re-analyzed
with CV and IV. With CV, the reduction in p for LDR
compared to p obtained with the whole data set varied
between 41.0 and 79.6% in the populations of F2:3 lines
and between 30.1 and 65.2% in the two populations of
RIL. Estimates of p for SCB LDR were similar for CV
and IV. For SWCB LDR, p estimates obtained with IV
were larger than those obtained with CV in CML131×
CML67. The reverse was observed for Ki3×CML139.
Under the assumption of identical selection intensities,
and based on the re-estimates of p, MAS using only mo-
lecular marker information is less-efficient than conven-
tional phenotypic selection (CPS). MAS combining
marker and phenotypic data increases the relative effi-
ciency by only 4% in comparison to CPS. In conclusion,
MAS for improving SWCB and SCB LDR seems not-
promising unless additional QTLs with proven large ef-

fects are available or the costs of marker assays are con-
siderably reduced.

Keywords Insect resistance · QTL · Cross validation · 
Maize · Marker-assisted selection (MAS)

Introduction

The southwestern corn borer (SWCB), Diatraea grandi-
osella Dyar, and the sugarcane borer (SCB), Diatraea
saccharalis Fabricius, are serious insect pests in tropical
and subtropical areas of Central and Latin America. In
the small-scale, low-input farming systems prevailing in
these regions, low yield stability is partly due to the
highly variable damage caused by SWCB and SCB.

Resistance to SWCB and SCB larvae feeding in tropi-
cal maize germplasm was reported to be quantitative
with mainly additive gene action for first-generation leaf
feeding resistance (Hinderliter 1983; Thome et al. 1992).
QTL studies confirmed these results (Bohn et al. 1996,
1997; Groh et al. 1998; Khairallah et al. 1998). QTLs
with predominantly additive gene effects were found on
all maize chromosomes, except for chromosomes 4 and
6. Moreover, a high genotypic correlation was found be-
tween SWCB and SCB leaf-feeding resistance suggest-
ing a common genetic basis for the resistance against
both insect species. Bohn et al. (1997) reported seven
QTLs with pleiotropic effects on chromosomes 1, 5, 7
and 9 in an F2 population derived from a cross between a
resistant and a highly susceptible tropical inbred line.
However, these QTLs explained only half of the geno-
typic variance for SWCB and SCB leaf-feeding resis-
tance.

A preliminary comparison of QTL consistency across
populations and generations based on common chromo-
somal-bin positions revealed a low consistency of QTL
positions across different populations but a moderate
agreement between QTLs found in different generations
for a given population (Groh et al. 1998). The authors
explained the lack of consistency by: (1) different sets of
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QTLs segregating in the different populations, (2) domi-
nance effects that are not detectable in populations of
RIL, (3) epistasis, and (4) a low power of QTL detection
due to small population sizes (n<200).

The primary goal of QTL studies is to provide mark-
er-QTL associations for MAS programs. For a successful
application of MAS it is essential to have a detailed
knowledge about the putative location and effects of ge-
netic factors influencing the target trait. MAS is more ef-
ficient than CPS if: (1) QTL positions are estimated with
high precision in order to choose markers showing a
minimum of recombination with the QTL, (2) QTL ef-
fects are estimated without bias due to genotypic and en-
vironmental sampling, and (3) p is sufficiently large for
the examined trait (Lande and Thompson 1990).

Computer simulations (Utz and Melchinger 1994;
Beavis 1998) demonstrated that with the currently used
methods of QTL analysis, such as simple interval map-
ping (Lander and Botstein 1989) or composite interval
mapping (CIM) (Jansen and Stam 1994; Zeng 1994), the
estimates of individual QTL effects and p can be severe-
ly inflated. Furthermore, confidence intervals for QTL
positions are fairly large for the population sizes com-
monly used in QTL mapping experiments (van Ooijen
1992; Visscher et al. 1996). Following a proposal by
Lande and Thompson (1990), Melchinger et al. (1998)
employed independent population samples for estimating
QTL effects and confirmed that estimates of the pheno-
typic and genotypic variance explained by QTLs detect-
ed in a calibration sample were substantially inflated.
Consequently, the prospects of MAS are generally as-
sessed too optimistically.

The overall goal of this study was to assess the pros-
pects of MAS for improving the level of insect resistance
of tropical and subtropical maize germplasm based on re-
analyses of published QTL experiments (Bohn et al.
1996, 1997; Groh et al. 1998; Khairallah et al. 1998). Our
objectives were: to (1) determine the bias in estimates of
QTL effects and p obtained from populations of F2:3 lines
using cross validation and validation with independent
populations of RIL, and (2) to draw realistic conclusions
about the prospects of MAS for increasing the level of
leaf-feeding resistance against SWCB and SCB.

Materials and methods

QTL studies used for re-analyses

Four maize inbred lines were selected as parents: CML131, a
highly susceptible, subtropical white dent line out of CIMMYT’s
population 42, was crossed to CML67, a highly resistant, tropical
red/yellow semi-dent line from Antigua Group 2. Ki3, a tropical
yellow flint line from Suwan1 with susceptibility to Diatraea spp.,
was crossed to CML139, a resistant, subtropical yellow semi-flint
line selected out of Dominican Republic Group 1 and Antigua
Group 2. For the first cross a total of 171 F2:3 lines and 187 RILs,
subsequently denoted as [CML131×CML67]-F2 and [CML131×
CML67]-RIL, respectively, and for the second cross 475 F2:3 lines
and 158 RILs, subsequently denoted as [Ki3×CML139]-F2 and
[Ki3×CML139]-RIL, were used for QTL mapping (see Table 1).
The RILs of each cross were derived from another sample of F2

plants. All field experiments with manual infestations of SWCB or
SCB larvae were conducted at CIMMYT’s experimental stations
at Tlaltizapán and Poza Rica, Mexico, during 1991 to 1995. Each
year-location or year-season combination was treated as an envi-
ronment in the subsequent statistical analyses. For a detailed de-
scription of the QTL studies see Bohn et al. (1996 and 1997),
Groh et al. (1998) and Khairallah et al. (1998).

For evaluating the level of antibiosis against SWCB and SCB,
every plant was manually infested with 30 to 45 neonate SWCB or
SCB larvae at the six- to eight-leaf stage (mid-whorl) by mixing
freshly hatched larvae with maize-cob grits and applying the mix-
ture into the plant whorl using a mechanical dispenser (Mihm
1983). Leaf feeding damage caused by the insect larvae was as-
sessed on each infested plant 2 to 3 weeks after infestation using a
leaf-damage rating scale from 1 (no visible leaf damage) to 10
(dead growing point, all leaves with long lesions) as described by
Ortega et al. (1980) and Thome et al. (1992).

For each parental cross, separate linkage maps were construct-
ed for the F2 and RIL populations. Linkage maps for cross
CML131×CML67 were based on 190 F2 individuals and 98 RFLP
marker loci, and 187 RILs and 136 RFLP marker loci. Linkage
maps for cross Ki3×CML139 were constructed using 475 F2 indi-
viduals and 128 RFLP marker loci, and 143 RILs and 146 RFLP
marker loci. In total, 57% of the RFLP marker loci used in
[CML131×CML67]-F2 were also employed for linkage-map con-
struction in [CML131×CML67]-RIL, whereas 72% of RFLP
marker loci used in [Ki3×CML139]-F2 were also employed for
[Ki3×CML139]-RIL. Software package MAPMAKER (Lander et
al. 1987) was employed for linkage-map construction.

Data analyses

QTL re-mapping and re-estimation of their effects for SCB and
SWCB LDR for the whole data sets was performed as described
by Groh et al. (1998) using means across environments with
PLABQTL (Utz and Melchinger 1996), which employs interval
mapping by the regression approach (Haley and Knott 1992) in
combination with the use of selected markers as cofactors (Jansen
and Stam 1994; Zeng 1994). The selection of cofactors by step-
wise regression was described by Melchinger et al. (1998). For
comparison with most preceding QTL mapping studies, a LOD
threshold of 2.5 was chosen for declaring a putative QTL signifi-
cant, ensuring a comparison-wise type-I error of Pc<0.0092 for the
F2 populations and of Pc<0.0032 for the populations of RILs. Esti-
mates of QTL positions were obtained at the position where the
LOD score assumed its maximum in the region under consider-
ation. The proportion of the genotypic variance explained by all
detected QTLs (p) was estimated from the ratio

where R2
adj is an estimator of the proportion of the phenotypic vari-

ance explained by all detected marker-QTL-marker associations
(Utz et al. 2000) and ĥ2 is the heritability of the respective trait on
an entry mean basis (Hallauer and Miranda 1981).

Cross validation

For testing the effect of genotypic sampling, we applied a five-
fold cross-validation procedure (CV/G) as described in detail by
Utz et al. (2000). The whole data set (DS) containing the entry
means across environment for each mapping population was ran-
domly split into k=5 disjoint subsets. Four subsets were combined
to form the estimation set (ES) for QTL detection and the estima-
tion of genetic effects. The remaining subset formed the test set
(TS) in which predictions derived from ES were tested for their
validity by correlating predicted and observed data. By permutat-
ing the respective subsets for ES and TS, five different CV/G runs
are possible for the five-fold CV. To increase the precision of esti-
mates of p, additional CV/G runs were generated by using 40 dif-
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ferent randomizations for assigning genotypes to the respective
subsamples, yielding a total of 200 replicated CV/G runs.

Estimates of p obtained from ES and TS were compared to de-
termine the magnitude of bias in p due to genotypic sampling. Fol-
lowing Utz et al. (2000), the proportion of the genotypic variance
explained by the detected QTLs in TS (p̂TS.ES) was calculated from
the adjusted squared correlation coefficient between the phenotyp-
ic entry means observed in TS (YTS) and the predicted genotypic
values (QTS.ES) on the basis of results derived from ES, divided by
the heritability of the trait under study:

Estimates of R2
adj were devided by ĥ2 to avoid the attenuation effect

in error-in-variables models. Using a LOD threshold of 2.5, each
CV/G run yielded different estimates for the number of QTLs, their
location, and genetic effects in the ES. Estimates of p in ES and TS
were calculated as the median p̃ over all replicated CV/G runs. The
relative bias in estimates of pES was calculated based on CV/G re-
sults as (1–p̃TS.ES/p̃ES). The average number of QTLs was determined
as the mean across replicated CV/G runs. A more-detailed analysis
was performed for putative QTLs for SWCB and SCB on chromo-
some 5. The precision of QTL positioning was determined by the
relative frequency of detected QTLs for 2,000 replicated CV/G runs
in 1-cM intervals along chromosome 5 from the ES with k=5. The
median additive genetic effect ãES was calculated for each scanned
chromosomal position. For each âES, the corresponding additive ef-
fect from TS (âTS) was determined by multiple regression based on:
(1) the map positions of all QTLs detected in ES, and (2) the marker
genotypes of the F2:3 or RILs in TS at the respective flanking mark-
er loci according to described procedures (Haley and Knott 1992;
Utz and Melchinger 1996). Subsequently, the median ãTS was calcu-
lated across all CV/G runs for a given position.

Validation with independent samples

The populations of RILs were used for independent validation of
QTL effects and p estimates obtained with the populations of F2:3
lines. The position of QTLs for SWCB and SCB LDR detected in
populations of F2:3 lines were transferred to their respective posi-
tion on the RIL linkage maps based on the relative position of the
QTLs in an interval built by the markers common to both popula-
tions as described in detail by Groh et al. (1998).

The same ES as in CV/G were used to predict genotypic values
QVS.ES for the validation set (VS). The adjusted squared correlation
coefficient between QVS.ES and the phenotypic entry means (YVS)
from the [CML131×CML67]-RIL and the [Ki3×CML139]-RIL,
divided by the heritability of the trait under study, served as an un-
biased estimate of the genotypic variance explained by the puta-
tive QTLs detected in the ES:

Estimates of pVS.ES were calculated as the median p̃VS.ES of replicat-
ed runs. The relative bias in estimates of pES was calculated based
on results obtained by IV as (1–p̃VS.ES/p̃ES).

Efficiency of MAS

The relative efficiency (RE) of MAS over CPS was determined
based on the formula derived by Lande and Thompson (1990). It
was assumed that molecular-marker scores can be recorded with-
out errors, and selection intensities of MAS and CPS are of equal
size. If selection is only performed on marker loci, the efficiency
relative to CPS of the same selection intensity was calculated as
REp=√p/h2¯¯¯¯¯¯. For MAS, which combines phenotypic data and mo-
lecular marker information, RE was calculated as

Results

Trait means, variances and heritabilities

Quantitative genetic parameters for SWCB and SCB
leaf-feeding resistance of F2:3 and RIL populations de-
rived from crosses CML131×CML67 and Ki3×CML139
were presented in detail by Bohn et al. (1997), Groh et
al. (1998), and Khairallah et al. (1998). The mean LDR
across insect species, populations and generations varied
between 4.9 and 6.9 (Table 1). For cross CML131×
CML67, SWCB larvae feeding caused higher LDR val-
ues than SCB larvae feeding especially in the RIL. Ge-
notypic variances (σ̂ 2

g) among F2:3 lines and RILs were
highly significant (P<0.01) for SWCB LDR and SCB
LDR in both crosses. For [Ki3×CML139]-RIL, the σ̂ 2

g of
SWCB LDR was substantially smaller than for the other
populations. Estimates of the genotype×environment in-
teraction variance (σ̂ 2

ge) for LDR were highly significant
(P<0.01) and of similar size for SWCB and SCB. In the
F2:3 populations, σ̂ 2

ge was significantly larger than in the
RIL populations for SWCB and SCB LDR. This resulted
in greater ĥ2 values for SWCB and SCB LDR in the RIL
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Table 1 Information about the mapping populations used for the re-analysis of QTLs involved in the leaf-damage ratings (LDR) against
tropical maize stem-borer species D. grandiosella (SWCB) and D. saccharalis (SCB) as well as means and variance components for LDR

Cross Gen- Number of Insect Means Variance components Reference
eration

Families Markers P̄a X̄ σ̂ 2
g σ̂ 2

ge

1–10 rating scale

CML131×CML67 F2:3 171 98 SWCB 6.6±0.1b 6.9±0.1 0.33±0.05** 0.20±0.04** Bohn et al. 1997
SCB 6.4±0.1 6.3±0.1 0.29±0.05** 0.22±0.04** Bohn et al. 1997

F6:7 187 136 SWCB 6.0±0.3 6.3±0.0 0.22±0.03** 0.06±0.02** Groh et al.1998
SCB 4.7±0.2 4.9±0.1 0.36±0.05** 0.08±0.03** Groh et al.1998

Ki3×CML139 F2:3 475 128 SWCB 6.4±0.0 6.5±0.0 0.21±0.03** 0.63±0.03 Khairallah et al. 1998
F7:8 158 146 SWCB 6.1±0.2 5.9±0.1 0.11±0.03** 0.09±0.03** Groh et al.1998

** Variance component was significant at the 0.01 probability 
level

a P̄=mean of parents, X̄=mean of population
b Standard errors are attached
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Table 2 Comparison of results obtained from QTL studies per-
formed with populations of F2:3 and RILs derived from the crosses
CML131×CML67 and Ki3×CML139 analyzed with composite in-

terval mapping, five-fold cross validation, and independent valida-
tion (for details see text)

Item Parameter CML131×CML67 Ki3×CML139
estimateb

SCB-LDRa SWCB-LDR SWCB-LDR

F2:3 RIL F2:3 RIL F2:3 RIL

Data set (DS) h2 0.59 0.75 0.64 0.72 0.50 0.62
No. of QTLs 10 5 5 10 11 11
p̂DS (%) 84.2 69.8 46.0 77.5 68.4 79.2

Estimation set (ES) No. of QTLs 8.4 5.8 6.8 8.9 9.3 9.0
1, 12c 1, 13 2, 14 2, 24 5, 14 3, 20

p̃ES (%) 81.7 70.3 55.2 73.4 62.7 74.8
60.3, 96.3d 54.6, 81.7 30.3, 78.3 56.2, 85.8 48.5, 75.4 51.5, 95.9

Test set (TS) p̃TS.ES (%) 38.5 48.7 11.3 38.1 37.0 26.0
9.5, 76.2 19.4, 75.1 1.4, 35.8 6.4, 67.5 17.1, 60.2 4.7, 65.0

Validation set (VS) p̃VS.ES (%) 35.9 28.8 14.2
17.7, 52.1 10.1, 44.4 7.4, 22.8

a LDR=leaf damage rating
b Number of QTL in ES calculated as the mean; p̃ES, p̃TS.ES, and p̃VS.ES
denote the median across all cross-validation and validation runs

c Range of number of QTLs
d Percentiles of 5 and 95%

Table 3 Position of QTLs de-
tected for SWCB and SCB
leaf-damage ratings (LDR) and
their respective additive effects
determined using the whole da-
ta set (âDS), 200 cross-valida-
tion runs (âTS.ES), or an inde-
pendent sample of RILs (âVS.ES)

Chr.b Position âDS âTS.ES
a âVS.ES

Median (10, 90) Percentile Freq.c 

cM 1-10 rating scale % 1-10 rating sc.

CML131×CML67

SWCB LDR

1 102 –0.25** –0.26 –0.42 –0.03 3.0 –0.04
1 158 –0.24* –0.09 –0.45 0.05 4.0 –0.14**
5 98 –0.26** –0.20 –0.43 0.06 23.0 –0.10**
7 61 –0.25** –0.23 –0.40 0.05 3.5 –0.10*
9 70 –0.34** –0.37 –0.54 –0.16 8.0 –0.24**

SCB LDR

1 163 –0.23** –0.24 –0.58 0.23 6.0 –0.10*
2 24 –0.23** –0.27 –0.87 0.33 5.0 –0.06
2 126 –0.15** –0.22 –0.66 –0.01 14.5 –0.02
5 73 –0.28** –0.28 –0.36 –0.07 5.5 –0.11*
5 135 –0.14** –0.15 –0.33 0.11 20.0 –0.11*
7 51 –0.22** –0.25 –0.49 –0.08 3.5 –0.15**
8 59 –0.26** –0.15 –0.32 0.21 6.5 –0.15**
9 58 –0.24** –0.32 –0.43 –0.08 5.5 –0.40**
9 97 –0.22** –0.32 –0.53 –0.16 8.0 –0.07

10 84 –0.17** –0.12 –0.37 0.11 22.5 –0.01

Ki3×CML139

SWCB LDR

2 0 –0.01 0.02 –0.12 0.12 12.5 –0.06
3 124 –0.23** –0.17 –0.35 –0.03 17.0 –0.08
3 188 –0.18** –0.18 –0.32 –0.07 20.5 –0.07
4 16 0.19** 0.05 –0.20 0.32 3.0 0.06
5 4 –0.14** –0.11 –0.17 0.00 6.0 –0.02
5 164 –0.20** –0.21 –0.31 –0.12 9.0 –0.07
5 198 –0.03 –0.09 –0.28 0.10 13.0 0.05
6 8 0.24** 0.19 0.13 0.28 7.5 0.04
7 96 –0.12** –0.11 –0.23 0.13 8.0 0.06
8 44 –0.17** –0.18 –0.30 –0.10 8.5 –0.13*
9 132 –0.21** –0.12 –0.26 –0.05 8.5 –0.19**

*, ** Significant at the 0.05 and
0.01 probability level, respec-
tively
a Median and percentiles were
calculated based on 200 CV
runs
b Chr.=chromosome
c Freq.=frequency of QTL 
detection across 200 CV runs



populations than in the F2:3 population of the cross
CML131×CML67. The phenotypic correlation coeffi-
cient between SWCB LDR and SCB LDR was r̂p=0.62
(P<0.01) in the [CML131×CML67]-F2 and r̂p=0.76
(P<0.01) in the [CML131×CML67]-RIL.

QTL analyses

Using the entire DS, ten QTLs for SCB LDR and five
QTLs for SWCB LDR were detected in the [CML131×
CML67]-F2 (Table 2). In the [CML131×CML67]-RIL,
five QTLs were detected for SCB LDR and ten QTLs for
SWCB LDR. For SWCB LDR, 11 QTLs were found in
the [Ki3×CML139]-F2 and the [Ki3×CML139]-RIL. Si-
multaneously, these QTLs explained between 46.0 to
84.2% of (σ̂ 2

g).
In the 200 ES, the mean number of detected QTLs

varied from 5.8 to 9.3 for the SCB and SWCB LDR and
the median p̃ES exceeded 55% across all mapping popula-
tions. For both traits p̃ES was smaller than the respective
p̂DS value in most populations, except for SCB LDR in
the [CML131×CML67]-RIL and SWCB LDR in the
[CML131×CML67]-F2. Cross validation resulted in
p̃TS.ES values that were substantially reduced in compari-
son with p̃ES values. The reduction ranged from 30.1%
for SCB LDR in the [CML131×CML67]-RIL to 79.6%
for SWCB LDR in the [CML131×CML67]-F2.

The use of RILs as independent population samples
for validating the QTL results obtained in the respective
F2 populations showed no consistent results across insect
species and parental crosses. In cross CML131×CML67,
estimates of p̃TS.ES and p̃VS.ES were of similar size for SCB
LDR, whereas p̃VS.ES was substantially larger than p̃TS.ES
for SWCB LDR. In contrast, p̃VS.ES was 45% smaller than
p̃TS.ES in the cross Ki3×CML139.

Additive effects calculated in the DS (âDS) of
[CML131×CML67]-F2 for SWCB and SCB LDR ranged
from –0.34 to –0.14 (Table 3). Dominance effects were
significant only for the second QTL on chromosome 1
for SWCB LDR. For [Ki3×CML139]-F2, the âDS ranged
from –0.23 to 0.24, with two QTLs on chromosomes 2
and 5 displaying significant (P<0.01) dominance. The
ãTS.ES values obtained by CV/G at the QTL positions de-
termined with the DS varied between –0.37 and –0.09
for the [CML131×CML67]-F2 and between –0.21 to
0.19 for [Ki3×CML139]-F2. For half of the detected
QTLs the range of ãTS.ES estimates included negative, but
also positive, values. Applying IV, four out of five QTLs
for SWCB LDR and six out of ten QTLs for SCB LDR
detected in the [CML131×CML67]-F2 yielded signifi-
cant (P<0.05) âVS.ES values. For the cross Ki3×CML139,
only two QTLs detected in the F2 population showed a
significant (P<0.05) additive effect also in the indepen-
dent population of RILs. In CML131×CML67, signifi-
cant estimates of the absolute value of aVS.ES, denoted as
|âVS.ES|, were smaller than |âDS| and |ãTS.ES| for SWCB
LDR QTLs, except for the QTL on chromosome 1. In
contrast, |âVS.ES| was smaller than |âDS| for most of the

SCB LDR QTLs but |âVS.ES| was larger than |ãTS.ES| for
half of the SCB LDR QTLs. Significant values of |âVS.ES|
were smaller than |âDS| and |ãTS.ES| for SWCB LDR
QTLs in Ki3×CML139.

Efficiency of MAS

Based on p̃ES, estimates of RE ranged from 1.05 to 1.12
for MAS based on molecular-marker data, and from 1.14
to 1.21 for MAS combining phenotypic data with infor-
mation on molecular markers (Table 4). In comparison to
RE estimates based on p̃ES, RE values of both MAS
schemes dropped to a minimum of 0.5, if RE was calcu-
lated using p̃TS.ES and p̃VS.ES for cross the CML131×
CML67. For cross Ki3×CML139, the reduction in RE
based on p̃VS.ES was larger than that obtained by using
p̃TS.ES across both MAS schemes.

Discussion

The improvement of the host plant resistance of tropical
and subtropical maize germplasm against SWCB and
SCB is a major breeding objective. Based on the estimat-
ed relative small number of genes involved in the leaf-
feeding resistance against both insect pests, as well as
the preponderance of additive gene action, recurrent se-
lection procedures are useful tools for increasing the lev-
el of resistance (Smith et al. 1989). However, recurrent
selection and screening techniques for evaluating insect
resistance are laborious and time consuming. To over-
come these problems, we have previously proposed to
use MAS for those genomic regions that significantly
improve insect resistance without adversely affecting
other important agronomic traits (Bohn et al. 1996). The
prospects of MAS to improve both SWCB and SCB re-
sistance simultaneously were regarded to be high be-
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Table 4 Relative efficiencies of marker-assisted selection (MAS)
for SCB and SWCB leaf-feeding resistance in two tropical maize
populations purely based on marker data or based on phenotypic
and molecular data. Relative efficiencies were calculated with es-
timates of p obtained from composite interval mapping without
cross-validation, with cross-validation, and independent validation

Item Used p̂ CML131×CML67 Ki3×CML139

SCB SWCB SWCB

Pure MASa p̂DS
b 1.15 0.91 1.17

p̃ES 1.08 1.05 1.12
p̃TS.ES 0.72 0.50 0.88
p̃VS.ES 0.75 0.72 0.53

Combined MAS p̂DS 1.17 1.10 1.23
p̃ES 1.14 1.15 1.21
p̃TS.ES 1.04 1.03 1.11
p̃VS.ES 1.05 1.06 1.04

a Pure MAS=MAS based on marker data only; combined
MAS=MAS based on phenotypic and marker data
b DS, data set; ES, estimation set, TS, test set; VS, validation set



cause of: (1) high values for p̂DS, (2) QTL×environment
interactions of negligible size for most QTLs conferring
resistance, (3) the high genotypic correlation between
SWCB and SCB resistance, and (4) the advent of marker
systems that are more-cost efficient than RFLPs. Howev-
er, QTL effects and p were estimated from the same data
as used for QTL detection (Bohn et al. 1997; Groh et al.
1998; Khairallah et al. 1998). Based on the results of re-
cent publications (Melchinger et al. 1998; Utz et al.
2000), we concluded that the QTL effects reported for
SWCB and SCB resistance and p̂DS were upwardly bi-
ased and a re-analysis of these data with new methods
was appropriate.

Two approaches can be applied to obtain less-biased
estimates of QTL effects and p. Firstly, Utz et al. (2000)
employed cross-validation to eliminate the bias due to
model selection caused by genotypic and environmental
sampling. Secondly, Lande and Thompson (1990) sug-
gested the use of two independent samples derived from
the same parental cross, one being used for QTL detec-
tion and the other subsequently for estimation of the
QTL effects at the respective positions. In this study,
both approaches were used to obtain realistic estimates
of QTL effects and p.

Validation of QTL effects and p

Based on the whole data set, we detected 5 to 11 QTLs
for insect resistance in populations of F2:3 lines and RILs
derived from the crosses CML131×CML67 and
Ki3×CML139. In contrast, the number of QTLs detected
for LDR varied between 1 and 24 across all 200 CV/G
runs. Possible explanations for the varying subsets of
QTL detected by CV/G are (1) the genotypic sampling
performed by CV/G, and (2) the small size of the map-
ping populations (n<200, with a single exception) result-
ing in a low power of QTL detection. The latter was con-
firmed by the considerably smaller range of detected
QTLs across all ES for the large [Ki3×CML139]-F2 map-
ping population (n=475). Our observations are in agree-
ment with previous studies (Beavis 1998), which showed
that the probability of identifying the same set of QTL
across different samples of the same population is low, if
the trait under study is governed by multiple genes with
small effects and the mapping population sizes are small.
As a consequence, for each ES a different statistical mod-
el for estimating the genetic effect of QTLs was selected,
resulting in a wide range of pES estimates.

In most cases, p̃ES was smaller than the respective val-
ue of p̃DS. This decrease was expected, because ES con-
tains only 80% of the genotypes of the whole data set re-
sulting in a reduced power of QTL detection. However,
for SWCB LDR on average two additional QTLs were
detected using ES, resulting in a p̃ES value that exceed
p̃DS by 17%. The appearance of extra QTLs for SWCB
can be explained by two putative QTLs that were right
below the level of significance within the whole data set
(on chromosomes 5 and 8, data not shown); with geno-

typic sampling in ES these QTLs were frequently above
the critical LOD threshold of 2.5.

The inflation of p̃ES compared with p̃TS.ES was attribut-
able to genotypic sampling (CV/G) and ranged from 
30 to 80%. The relative bias found in the cross
CML131×CML67 was larger in the F2:3 families than in
the RIL population for LDR of both insect species. This
result can be explained by the larger h2 estimates for
LDR in RILs than for F2:3 families. However, for the
cross Ki3×CML139 the relative bias of estimation was
larger for the RILs than for the population of F2:3 lines. It
can be hypothesized that this result was mainly caused
by the contrasting number of lines evaluated for each
generation (F2:3=475, RILs=158). Similar to our study,
Utz et al. (2000) evaluated the bias of p in testcrosses of
344 F3 maize lines applying a five-fold CV/G. They
found that p̃TS.ES was substantially reduced as compared
to p̃ES and substantiated their findings by re-analyzing
barley and maize QTL studies from the literature. Using
the CV/G scheme, the bias ranged from 30 to 70%.
However, the largest reduction in p̃TS.ES was observed by
CV with simultaneous genotypic and environmental
sampling (CV/GE). Therefore, Utz et al. (2000) recom-
mended the CV/GE scheme to get unbiased estimates of
p. However, in the case of small G×E interactions, they
suggested that the use of CV/G is sufficient to assess the
prospects of MAS. In our studies, SWCB and SCB resis-
tance were evaluated in a small number of environments
(U≤3) and QTL×E interactions were not significant for
most LDR QTLs. Therefore, CV was restricted to CV/G.
In addition, the results of Utz et al. (2000) showed that
the difference between p̃TS.ES values based on CV/G and
CV/GE were in most cases small, hence, a large part of
the reduction found with CV/GE was attributable to ge-
notypic sampling. Based on these findings, it can be con-
cluded that in our study a significant proportion of the
unknown bias of p for SWCB and SCB LDR was re-
moved by CV/G.

Inconsistent results were observed if the QTL effects
and p obtained for populations of F2:3 lines were validat-
ed with an independently derived set of RILs from the
same cross. For the population [CML131×CML67]-F2,
the median p̃VS.ES for SCB LDR was of similar size as
p̃TS.ES but about twice as large for SWCB LDR. In con-
trast, p̃VS.ES was markedly smaller than p̃TS.ES for SWCB
LDR in the [Ki3×CML139]-F2. Several reasons may ex-
plain the observation that p̃TS.ES was larger than p̃VS.ES. (1)
Some QTLs detected in the F2 populations were false
positives. (2) The most-likely QTL position determined
in the F2 population was not the most-likely QTL posi-
tion in the RIL, even though the QTL support intervals
overlapped. (3) Linkage disequilibrium between marker
loci and QTLs are reduced in higher selfing generations.
(4) Dominance effects were included in the model for es-
timating QTL effects in the F2 populations but not in the
RIL populations. Even though the resistance against
SWCB and SCB was mainly determined by additive ef-
fects, dominance may not be negligible in the inheritance
of these traits (see Table 3, Bohn et al. 1996; Khairallah
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et al. 1998). (5) F2 and RIL populations were evaluated
for their level of insect resistance in different environ-
ments and, therefore, environmental effects may contrib-
ute to the finding that p̃TS.ES was larger than p̃VS.ES. How-
ever, using F2:3 lines and RILs evaluated in different en-
vironments, we expect to obtain p estimates that are cor-
rected for genotypic and environmental sampling. A pos-
sible reason why p̃TS.ES was smaller than p̃VS.ES is that for
independent validation the same validation sample (RIL)
was utilized throughout. Therefore, the observed results
with independent validation can be considerably influ-
enced by the specific RIL sample used for the VS.

Although it was possible to obtain more reliable p̂E
and R2

adj values in this study by avoiding bias causing
model selection, both estimates are still biased. The p
and R2

adj estimators are the ratios of two estimators, and it
is a well established fact that ratios can be biased even if
the nominator and denominator estimators are not bi-
ased. In contrast to Charcosset and Gallais (1996), who
postulated that R2

adj values are unbiased, calculations us-
ing Equation 27.93 for R2 derived by Kendall and Stuart
(1961) showed that R2

adj values are still inflated. Howev-
er, this bias can be considered to be small (Utz, unpub-
lished data). In addition, the regression method used for
QTL mapping underestimates the true R2

adj value (Xu
1995). Therefore, it can be assumed that both biases do
partly cancel each other out.

Applying 200 CV/G runs, the median additive effect
was determined for each putative QTL position comput-
ed with DS. The âTS.ES values obtained for each QTL po-
sition varied within a wide range. However, comparing
aDS estimates with ãTS.ES no clear trend towards reduced
additive effects was observed. In general, additive effects
determined by IV were considerably smaller and showed
a different ranking than the respective effects obtained
with DS and CV/G. This reduction can be explained by
genotypic and environmental sampling effects and
QTL×environment interactions. In addition, all reasons
leading to a reduction in âVS.ES compared with ãTS.ES ap-
ply here, because the additive effect of a QTL is associ-
ated with the partial R2 value and, consequently, with p
(Melchinger et al. 1998).

QTL position

Confidence intervals for QTL positions are large if small
population sizes are used for QTL detection (van Ooijen
1992; Visscher et al. 1996). In order to gain information
about the position of a QTL in a different ES, we adopt-
ed the concept of QTL intensity distributions proposed
by Sillanpää and Arjas (1998) and Utz et al. (2000).
Based on 2,000 CV/G runs, we produced QTL frequency
distributions for SWCB and SCB leaf-damage ratings to
determine the most-likely QTL position. The QTL fre-
quency distributions for SWCB and SCB LDR followed
approximately the LOD curves obtained with CIM for
the whole data set. For leaf-damage ratings, two well-
defined QTL frequency peaks were detected for SWCB

and SCB on chromosome 5 (Fig. 1). The first QTLs for
SWCB and SCB LDR are located in adjacent marker in-
tervals and both QTL frequency distributions overlap.
This result has two major effects on applying MAS.
First, if the QTL position is not localized with high pre-
cision in the ES, it is unlikely to obtain unbiased esti-
mates of the true genetic QTL effects in TS. Second, if
the QTL for SWCB and the first QTL for SCB LDR
have to be combined in one genotype by MAS, a large
marker bracket has to be used (Bracket: Markers 3 and 8;
interval length about 100 cM). However, if the marker
bracket is large, the probability that one of the QTLs is
lost due to recombination during successive generations
of MAS is high.

For both insect species a second frequency peak was
detected at the same chromosomal position, even though
no QTL was detected at this position for SWCB LDR
with CIM using the DS (Fig. 1). For each random sample
of genotypes used for calibration, a new set of cofactors
was determined for CIM. In most instances, only one of
the putative QTL positions for SWCB was significant,
depending upon which marker was selected as a cofactor
on chromosome 5.
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Fig. 1 QTL frequency distribution for SWCB and SCB leaf feed-
ing resistance at 1cM intervals on chromosome 5 obtained from
2000 cross validation runs for the F2 population derived from
cross CML131×CML67. The solid line indicates the LOD curves
determined from the entire data set using composite interval map-
ping. Marker positions are denoted by triangles



Prospects of MAS

The relative efficiency of MAS was determined based on
the new estimates of p obtained with CV/G and IV, and
the assumptions that: (1) the selection intensity is the
same for MAS solely based on molecular markers and
MAS combining information on markers with data on
phenotypic variation, implying equal costs for genotyp-
ing and phenotyping, and (2) marker data points are re-
corded without error. Values of RE were notably below 1
for pTS.ES and pVS.ES estimates, when MAS was solely
based on molecular markers. If both molecular-marker
information and phenotypic data were combined for
MAS, RE values approached 1.0. This indicated that the
efficiency was only slightly improved, when marker and
phenotypic data were combined for MAS to increase the
level of SWCB or SCB resistance. These results are in
agreement with empirical studies from the literature.
Early studies based on isozyme markers showed that
MAS was as effective as CPS (Stuber et al. 1982; Frei et
al. 1986; Stuber and Edwards 1986). Stromberg et al.
(1994) found no significant differences between MAS
and CPS for yield improvement. However, neither MAS
nor CPS improved yield significantly. Eathington et al.
(1997) studied the possibility to predict the testcross per-
formance of S4:5 lines by S1 testcross data, net molecular
score based on S1 genotypes, and combined indices.
They found S1 phenotypes to be better for predicting S4:5
testcross data than molecular markers.

In contrast to the RE estimate proposed by Lande and
Thompson (1990), Knapp (1998) introduced an alterna-
tive efficiency measure for MAS. This measure predicts
the effect of MAS based on the number of genotypes
necessary to select at least one superior genotype. Ap-
plying simulations, Knapp (1998) showed that the effi-
ciency of MAS was increased by reducing the number of
progeny to be tested, if MAS was solely based on those
markers with highly significant effects on the target trait.
Therefore, Knapp (1998) proposed to base MAS on
QTLs for which the most-accurate information is avail-
able. In order to obtain “bona fide” QTLs, he proposed
to use high LOD thresholds for QTL detection. However,
increasing the LOD threshold did not result in less-
biased p estimates for SWCB and SCB LDR in our study
(data not shown). Similar results were found by Utz et
al. (2000). As an alternative to the “bona fide” QTL ap-
proach, we recommend to employ cross validation to se-
lect marker-QTL associations for MAS with the largest
effect on the respective trait.

The key parameter for assessing the prospects of
MAS is pTS.ES. In order to obtain reliable and high pTS.ES
values for quantitative traits, large population sizes
(n>500) and a high number of test environments have to
be employed. However, mandatory large-scale experi-
ments are not an option for most breeders due to finan-
cial and logistic restrictions.
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